Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Gut Microbes ; 15(1): 2222437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37312436

RESUMO

Up to 25% of the E. coli strains isolated from the feces of healthy humans harbor the pks genomic island encoding the synthesis of colibactin, a genotoxic metabolite. Evidence is accumulating for an etiologic role of colibactin in colorectal cancer. Little is known about the conditions of expression of colibactin in the gut. The intestine is characterized by a unique oxygenation profile, with a steep gradient between the physiological hypoxic epithelial surface and the anaerobic lumen, which favors the dominance of obligate anaerobes. Here, we report that colibactin production is maximal under anoxic conditions and decreases with increased oxygen concentration. We show that the aerobic respiration control (ArcA) positively regulates colibactin production and genotoxicity of pks+ E. coli in response to oxygen availability. Thus, colibactin synthesis is inhibited by oxygen, indicating that the pks biosynthetic pathway is adapted to the anoxic intestinal lumen and to the hypoxic infected or tumor tissue.


Assuntos
Escherichia coli , Microbioma Gastrointestinal , Humanos , Escherichia coli/genética , Peptídeos , Oxigênio
2.
Microb Cell ; 10(3): 63-77, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36908282

RESUMO

Some Escherichia coli strains harbour the pks island, a 54 kb genomic island encoding the biosynthesis genes for a genotoxic compound named colibactin. In eukaryotic cells, colibactin can induce DNA damage, cell cycle arrest and chromosomal instability. Production of colibactin has been implicated in the development of colorectal cancer (CRC). In this study, we demonstrate the inhibitory effect of D-Serine on the expression of the pks island in both prototypic and clinically-associated colibactin-producing strains and determine the implications for cytopathic effects on host cells. We also tested a comprehensive panel of proteinogenic L-amino acids and corresponding D-enantiomers for their ability to modulate clbB transcription. Whilst several D-amino acids exhibited the ability to inhibit expression of clbB, D-Serine exerted the strongest repressing activity (>3.8-fold) and thus, we focussed additional experiments on D-Serine. To investigate the cellular effect, we investigated if repression of colibactin by D-Serine could reduce the cytopathic responses normally observed during infection of HeLa cells with pks + strains. Levels of γ-H2AX (a marker of DNA double strand breaks) were reduced 2.75-fold in cells infected with D-Serine treatment. Moreover, exposure of pks + E. coli to D-Serine during infection caused a reduction in cellular senescence that was observable at 72 h post infection. The recent finding of an association between pks-carrying commensal E. coli and CRC, highlights the necessity for the development of colibactin targeting therapeutics. Here we show that D-Serine can reduce expression of colibactin, and inhibit downstream cellular cytopathy, illuminating its potential to prevent colibactin-associated disease.

3.
Environ Pollut ; 317: 120625, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410598

RESUMO

Trichothecenes (TCT) are very common mycotoxins. While the effects of DON, the most prevalent TCT, have been extensively studied, less is known about the effect of other trichothecenes. DON has ribotoxic, pro-inflammatory, and cytotoxic potential and induces multiple toxic effects in humans and animals. Although DON is not genotoxic by itself, it has recently been shown that this toxin exacerbates the genotoxicity induced by model or bacterial genotoxins. Here, we show that five TCT, namely T-2 toxin (T-2), diacetoxyscirpenol (DAS), nivalenol (NIV), fusarenon-X (FX), and the newly discovered NX toxin, also exacerbate the DNA damage inflicted by various genotoxins. The exacerbation was dose dependent and observed with phleomycin, a model genotoxin, captan, a pesticide with genotoxic potential, and colibactin, a bacterial genotoxin produced by the intestinal microbiota. For this newly described effect, the trichothecenes ranked in the following order: T-2>DAS > FX > NIV ≥ DON ≥ NX. The genotoxic exacerbating effect of TCT correlated with their ribotoxic potential, as measured by the inhibition of protein synthesis. In conclusion, our data demonstrate that TCT, which are not genotoxic by themselves, exacerbate DNA damage induced by various genotoxins. Therefore, foodborne TCT could enhance the carcinogenic potential of genotoxins present in the diet or produced by intestinal bacteria.


Assuntos
Tricotecenos , Humanos , Animais , Tricotecenos/toxicidade , Tricotecenos/metabolismo , Dano ao DNA , Mutagênicos/toxicidade
4.
Proc Natl Acad Sci U S A ; 119(37): e2201779119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36070342

RESUMO

Chaperone proteins are essential in all living cells to ensure protein homeostasis. Hsp90 is a major adenosine triphosphate (ATP)-dependent chaperone highly conserved from bacteria to eukaryotes. Recent studies have shown that bacterial Hsp90 is essential in some bacteria in stress conditions and that it participates in the virulence of pathogenic bacteria. In vitro, bacterial Hsp90 directly interacts and collaborates with the Hsp70 chaperone DnaK to reactivate model substrate proteins; however, it is still unknown whether this collaboration is relevant in vivo with physiological substrates. Here, we used site-directed mutagenesis on Hsp90 to impair DnaK binding, thereby uncoupling the chaperone activities. We tested the mutants in vivo in two bacterial models in which Hsp90 has known physiological functions. We found that the Hsp90 point mutants were defective to support (1) growth under heat stress and activation of an essential Hsp90 client in the aquatic bacterium Shewanella oneidensis and (2) biosynthesis of the colibactin toxin involved in the virulence of pathogenic Escherichia coli. Our study therefore demonstrates the essentiality of the direct collaboration between Hsp90 and DnaK in vivo in bacteria to support client folding. It also suggests that this collaboration already functional in bacteria has served as an evolutionary basis for a more complex Hsp70-Hsp90 collaboration found in eukaryotes.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90 , Shewanella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligação Proteica , Dobramento de Proteína , Shewanella/genética , Shewanella/metabolismo
5.
Trends Microbiol ; 30(12): 1146-1159, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35672224

RESUMO

The structure and mode of action of colibactin with its potential involvement in cancer have been extensively studied but little is known about the intrinsic function of the biosynthetic gene cluster, coding for colibactin, as a bacterial genotoxin. Paradoxically, this pathogenicity island is also found in commensal and probiotic strains of Escherichia coli and in bacterial species colonizing olive trees and the digestive tract of bees. In this review, we summarize the available literature to address the following key questions. What does this genomic island really encode? What explains the extensive dissemination of this genetically mobile element? What do we really know about the biosynthetic and secretory pathways of colibactin? What is its inherent target/function?


Assuntos
Proteínas de Escherichia coli , Neoplasias , Policetídeos , Animais , Policetídeos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Dano ao DNA , Neoplasias/genética
6.
Toxins (Basel) ; 13(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34941734

RESUMO

Colibactin is a genotoxin produced primarily by Escherichia coli harboring the genomic pks island (pks+ E. coli). Pks+ E. coli cause host cell DNA damage, leading to chromosomal instability and gene mutations. The signature of colibactin-induced mutations has been described and found in human colorectal cancer (CRC) genomes. An inflamed intestinal environment drives the expansion of pks+ E. coli and promotes tumorigenesis. Mesalamine (i.e., 5-aminosalycilic acid), an effective anti-inflammatory drug, is an inhibitor of the bacterial polyphosphate kinase (PPK). This drug not only inhibits the production of intestinal inflammatory mediators and the proliferation of CRC cells, but also limits the abundance of E. coli in the gut microbiota and diminishes the production of colibactin. Here, we describe the link between intestinal inflammation and colorectal cancer induced by pks+ E. coli. We discuss the potential mechanisms of the pleiotropic role of mesalamine in treating both inflammatory bowel diseases and reducing the risk of CRC due to pks+ E. coli.


Assuntos
Escherichia coli/metabolismo , Mesalamina/farmacologia , Neoplasias/induzido quimicamente , Neoplasias/prevenção & controle , Peptídeos/toxicidade , Policetídeos/toxicidade , Anti-Inflamatórios não Esteroides/farmacologia , Humanos
7.
mSphere ; 6(4): e0062421, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378987

RESUMO

The probiotic Escherichia coli strain Nissle 1917 (DSM 6601, Mutaflor), generally considered beneficial and safe, has been used for a century to treat various intestinal diseases. However, Nissle 1917 hosts in its genome the pks pathogenicity island that codes for the biosynthesis of the genotoxin colibactin. Colibactin is a potent DNA alkylator, suspected to play a role in colorectal cancer development. We show in this study that Nissle 1917 is functionally capable of producing colibactin and inducing interstrand cross-links in the genomic DNA of epithelial cells exposed to the probiotic. This toxicity was even exacerbated with lower doses of the probiotic, when the exposed cells started to divide again but exhibited aberrant anaphases and increased gene mutation frequency. DNA damage was confirmed in vivo in mouse models of intestinal colonization, demonstrating that Nissle 1917 produces the genotoxin in the gut lumen. Although it is possible that daily treatment of adult humans with their microbiota does not produce the same effects, administration of Nissle 1917 as a probiotic or as a chassis to deliver therapeutics might exert long-term adverse effects and thus should be considered in a risk-versus-benefit evaluation. IMPORTANCE Nissle 1917 is sold as a probiotic and considered safe even though it has been known since 2006 that it harbors the genes for colibactin synthesis. Colibactin is a potent genotoxin that is now linked to causative mutations found in human colorectal cancer. Many papers concerning the use of this strain in clinical applications ignore or elude this fact or misleadingly suggest that Nissle 1917 does not induce DNA damage. Here, we demonstrate that Nissle 1917 produces colibactin in vitro and in vivo and induces mutagenic DNA damage. This is a serious safety concern that must not be ignored in the interests of patients, the general public, health care professionals, and ethical probiotic manufacturers.


Assuntos
Dano ao DNA , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genoma Bacteriano , Mutagênese , Probióticos , Animais , Células CHO , Cricetulus , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Feminino , Ilhas Genômicas , Células HeLa , Humanos , Camundongos , Mutação
8.
Microb Genom ; 7(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34128785

RESUMO

The bacterial genotoxin colibactin interferes with the eukaryotic cell cycle by causing dsDNA breaks. It has been linked to bacterially induced colorectal cancer in humans. Colibactin is encoded by a 54 kb genomic region in Enterobacteriaceae. The colibactin genes commonly co-occur with the yersiniabactin biosynthetic determinant. Investigating the prevalence and sequence diversity of the colibactin determinant and its linkage to the yersiniabactin operon in prokaryotic genomes, we discovered mainly species-specific lineages of the colibactin determinant and classified three main structural settings of the colibactin-yersiniabactin genomic region in Enterobacteriaceae. The colibactin gene cluster has a similar but not identical evolutionary track to that of the yersiniabactin operon. Both determinants could have been acquired on several occasions and/or exchanged independently between enterobacteria by horizontal gene transfer. Integrative and conjugative elements play(ed) a central role in the evolution and structural diversity of the colibactin-yersiniabactin genomic region. Addition of an activating and regulating module (clbAR) to the biosynthesis and transport module (clbB-S) represents the most recent step in the evolution of the colibactin determinant. In a first attempt to correlate colibactin expression with individual lineages of colibactin determinants and different bacterial genetic backgrounds, we compared colibactin expression of selected enterobacterial isolates in vitro. Colibactin production in the tested Klebsiella species and Citrobacter koseri strains was more homogeneous and generally higher than that in most of the Escherichia coli isolates studied. Our results improve the understanding of the diversity of colibactin determinants and its expression level, and may contribute to risk assessment of colibactin-producing enterobacteria.


Assuntos
Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Peptídeos/metabolismo , Fenóis/metabolismo , Policetídeos/metabolismo , Metabolismo Secundário , Tiazóis/metabolismo , Citrobacter/genética , Citrobacter/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Humanos , Klebsiella/genética , Klebsiella/metabolismo , Mutagênicos/metabolismo , Metabolismo Secundário/genética , Metabolismo Secundário/fisiologia
9.
Microb Genom ; 7(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33961542

RESUMO

The pks island codes for the enzymes necessary for synthesis of the genotoxin colibactin, which contributes to the virulence of Escherichia coli strains and is suspected of promoting colorectal cancer. From a collection of 785 human and bovine E. coli isolates, we identified 109 strains carrying a highly conserved pks island, mostly from phylogroup B2, but also from phylogroups A, B1 and D. Different scenarios of pks acquisition were deduced from whole genome sequence and phylogenetic analysis. In the main scenario, pks was introduced and stabilized into certain sequence types (STs) of the B2 phylogroup, such as ST73 and ST95, at the asnW tRNA locus located in the vicinity of the yersiniabactin-encoding High Pathogenicity Island (HPI). In a few B2 strains, pks inserted at the asnU or asnV tRNA loci close to the HPI and occasionally was located next to the remnant of an integrative and conjugative element. In a last scenario specific to B1/A strains, pks was acquired, independently of the HPI, at a non-tRNA locus. All the pks-positive strains except 18 produced colibactin. Sixteen strains contained mutations in clbB or clbD, or a fusion of clbJ and clbK and were no longer genotoxic but most of them still produced low amounts of potentially active metabolites associated with the pks island. One strain was fully metabolically inactive without pks alteration, but colibactin production was restored by overexpressing the ClbR regulator. In conclusion, the pks island is not restricted to human pathogenic B2 strains and is more widely distributed in the E. coli population, while preserving its functionality.


Assuntos
Escherichia coli/metabolismo , Mutagênicos/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Animais , Bovinos , DNA Bacteriano/genética , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Variação Genética , Ilhas Genômicas , Humanos , Peptídeos/genética , Filogenia , Análise de Sequência de DNA , Virulência , Fatores de Virulência/genética
10.
PLoS Pathog ; 17(2): e1009310, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630958

RESUMO

Urinary tract infections (UTIs) are among the most common outpatient infections, with a lifetime incidence of around 60% in women. We analysed urine samples from 223 patients with community-acquired UTIs and report the presence of the cleavage product released during the synthesis of colibactin, a bacterial genotoxin, in 55 of the samples examined. Uropathogenic Escherichia coli strains isolated from these patients, as well as the archetypal E. coli strain UTI89, were found to produce colibactin. In a murine model of UTI, the machinery producing colibactin was expressed during the early hours of the infection, when intracellular bacterial communities form. We observed extensive DNA damage both in umbrella and bladder progenitor cells. To the best of our knowledge this is the first report of colibactin production in UTIs in humans and its genotoxicity in bladder cells.


Assuntos
Dano ao DNA , Infecções por Escherichia coli/patologia , Peptídeos/metabolismo , Policetídeos/metabolismo , Bexiga Urinária/patologia , Infecções Urinárias/patologia , Escherichia coli Uropatogênica/isolamento & purificação , Idoso , Animais , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mutagênicos/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/microbiologia , Infecções Urinárias/genética , Infecções Urinárias/microbiologia
11.
Gut ; 70(6): 1088-1097, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32978245

RESUMO

OBJECTIVE: Data from clinical research suggest that certain probiotic bacterial strains have the potential to modulate colonic inflammation. Nonetheless, these data differ between studies due to the probiotic bacterial strains used and the poor knowledge of their mechanisms of action. DESIGN: By mass-spectrometry, we identified and quantified free long chain fatty acids (LCFAs) in probiotics and assessed the effect of one of them in mouse colitis. RESULTS: Among all the LCFAs quantified by mass spectrometry in Escherichia coli Nissle 1917 (EcN), a probiotic used for the treatment of multiple intestinal disorders, the concentration of 3-hydroxyoctadecaenoic acid (C18-3OH) was increased in EcN compared with other E. coli strains tested. Oral administration of C18-3OH decreased colitis induced by dextran sulfate sodium in mice. To determine whether other bacteria composing the microbiota are able to produce C18-3OH, we targeted the gut microbiota of mice with prebiotic fructooligosaccharides (FOS). The anti-inflammatory properties of FOS were associated with an increase in colonic C18-3OH concentration. Microbiota analyses revealed that the concentration of C18-3OH was correlated with an increase in the abundance in Allobaculum, Holdemanella and Parabacteroides. In culture, Holdemanella biformis produced high concentration of C18-3OH. Finally, using TR-FRET binding assay and gene expression analysis, we demonstrated that the C18-3OH is an agonist of peroxisome proliferator activated receptor gamma. CONCLUSION: The production of C18-3OH by bacteria could be one of the mechanisms implicated in the anti-inflammatory properties of probiotics. The production of LCFA-3OH by bacteria could be implicated in the microbiota/host interactions.


Assuntos
Colite/tratamento farmacológico , Mucosa Intestinal/metabolismo , PPAR gama/metabolismo , Estearatos/metabolismo , Estearatos/uso terapêutico , Animais , Bacteroidetes , Células CACO-2 , Permeabilidade da Membrana Celular , Quimiocina CXCL1/genética , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana , Células Epiteliais/fisiologia , Escherichia coli/metabolismo , Firmicutes/metabolismo , Microbioma Gastrointestinal/fisiologia , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Espectrometria de Massas , Camundongos , Oligossacarídeos/farmacologia , PPAR gama/genética , Proteínas Associadas a Pancreatite/genética , Permeabilidade , Nódulos Linfáticos Agregados , Prebióticos , Probióticos/química , Estearatos/análise , Proteína da Zônula de Oclusão-1/genética
12.
J Crohns Colitis ; 15(5): 787-799, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33201214

RESUMO

BACKGROUND AND AIMS: Thrombin levels in the colon of Crohn's disease patients have recently been found to be elevated 100-fold compared with healthy controls. Our aim was to determine whether and how dysregulated thrombin activity could contribute to local tissue malfunctions associated with Crohn's disease. METHODS: Thrombin activity was studied in tissues from Crohn's disease patients and healthy controls. Intracolonic administration of thrombin to wild-type or protease-activated receptor-deficient mice was used to assess the effects and mechanisms of local thrombin upregulation. Colitis was induced in rats and mice by the intracolonic administration of trinitrobenzene sulphonic acid. RESULTS: Active forms of thrombin were increased in Crohn's disease patient tissues. Elevated thrombin expression and activity were associated with intestinal epithelial cells. Increased thrombin activity and expression were also a feature of experimental colitis in rats. Colonic exposure to doses of active thrombin comparable to what is found in inflammatory bowel disease tissues caused mucosal damage and tissue dysfunctions in mice, through a mechanism involving both protease-activated receptors -1 and -4. Intracolonic administration of the thrombin inhibitor dabigatran, as well as inhibition of protease-activated receptor-1, prevented trinitrobenzene sulphonic acid-induced colitis in rodent models. CONCLUSIONS: Our data demonstrated that increased local thrombin activity, as it occurs in the colon of patients with inflammatory bowel disease, causes mucosal damage and inflammation. Colonic thrombin and protease-activated receptor-1 appear as possible mechanisms involved in mucosal damage and loss of function and therefore represent potential therapeutic targets for treating inflammatory bowel disease.


Assuntos
Doença de Crohn/metabolismo , Receptores Ativados por Proteinase/metabolismo , Trombina/metabolismo , Animais , Estudos de Casos e Controles , Feminino , Humanos , Lactonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Piridinas/farmacologia , Ratos , Ratos Wistar , Regulação para Cima
13.
mSphere ; 5(6)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328353

RESUMO

Colibactin induces DNA damage in mammalian cells and has been linked to the virulence of Escherichia coli and the promotion of colorectal cancer (CRC). By looking for mutants attenuated in the promoter activity of clbB encoding one of the key enzymes for the production of colibactin, we found that a mutant of the gene coding for the polyphosphate kinase (PPK) produced less colibactin than the parental strain. We observed this phenotype in different strains ranging from pathogens responsible for meningitis, urinary tract infection, or mouse colon carcinogenesis to the probiotic Nissle 1917. We confirmed the role of PPK by using an inhibitor of PPK enzymatic activity, mesalamine (also known as 5-aminosalicylic acid). Interestingly, mesalamine has a local anti-inflammatory effect on the epithelial cells of the colon and is used to treat inflammatory bowel disease (IBD). Upon treatment with mesalamine, a decreased genotoxicity of colibactin-producing E. coli was observed both on epithelial cells and directly on purified DNA. This demonstrates the direct effect of mesalamine on bacteria independently from its anti-inflammatory effect on eukaryotic cells. Our results suggest that the mechanisms of action of mesalamine in treating IBD and preventing CRC could also lie in the inhibition of colibactin production. All in all, we demonstrate that PPK is required for the promoter activity of clbB and the production of colibactin, which suggests that PPK is a promising target for the development of anticolibactin and antivirulence strategies.IMPORTANCE Colibactin-producing E. coli induces DNA damage in eukaryotic cells and promotes tumor formation in mouse models of intestinal inflammation. Recent studies have provided strong evidence supporting the causative role of colibactin in human colorectal cancer (CRC) progression. Therefore, it is important to understand the regulation of the production of this genotoxin. Here, we demonstrate that polyphosphate kinase (PPK) is required for the promoter activity of clbB and the production of colibactin. Interestingly, PPK is a multifunctional player in bacterial virulence and stress responses and has been proposed as a new target for developing antimicrobial medicine. We observed inhibition of colibactin production by using a previously identified PPK inhibitor (i.e., mesalamine, an anti-inflammatory drug commonly prescribed for inflammatory bowel diseases). These data brought us a new perspective on the regulatory network of colibactin production and provided us a clue for the development of anticolibactin strategies for CRC treatment/prophylaxis.


Assuntos
Escherichia coli/patogenicidade , Mutagênicos/metabolismo , Peptídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Policetídeos/metabolismo , Carcinogênese , Neoplasias do Colo/microbiologia , Dano ao DNA , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Virulência
14.
mSphere ; 5(4)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611705

RESUMO

The genotoxin colibactin produced by resident bacteria of the gut microbiota may have tumorigenic effect by inducing DNA double-strand breaks in host cells. Yet, the effect of colibactin on gut microbiota composition and functions remains unknown. To address this point, we designed an experiment in which pregnant mice were colonized with the following: (i) a commensal Escherichia coli strain, (ii) a commensal E. coli strain plus a genotoxic E. coli strain, (iii) a commensal E. coli strain plus a nongenotoxic E. coli mutant strain unable to produce mature colibactin. Then, we analyzed the gut microbiota in pups at day 15 and day 35 after birth. At day 15, mice that were colonized at birth with the genotoxic strain showed lower levels of Proteobacteria and taxa belonging to the Proteobacteria, a modest effect on overall microbial diversity, and no effect on gut microbiome. At day 35, mice that received the genotoxic strain showed lower Firmicutes and taxa belonging to the Firmicutes, together with a strong effect on overall microbial diversity and higher microbial functions related to DNA repair. Moreover, the genotoxic strain strongly affected gut microbial diversity evolution of pups receiving the genotoxic strain between day 15 and day 35. Our data show that colibactin, beyond targeting the host, may also exert its genotoxic effect on the gut microbiota.IMPORTANCE Infections of genotoxic Escherichia coli spread concomitantly with urbanized progression. These bacteria may prompt cell senescence and affect DNA stability, inducing cancer via the production of colibactin, a genotoxin shown capable of affecting host DNA in eukaryotic cells. In this study, we show that the action of colibactin may also be directed against other bacteria of the gut microbiota in which genotoxic E. coli bacteria have been introduced. Indeed, the presence of genotoxic E. coli induced a change in both the structure and function of the gut microbiota. Our data indicate that genotoxic E. coli may use colibactin to compete for gut niche utilization.


Assuntos
Escherichia coli/fisiologia , Microbioma Gastrointestinal , Mutagênicos , Peptídeos/genética , Animais , Bactérias/classificação , Dano ao DNA , Escherichia coli/genética , Feminino , Interações entre Hospedeiro e Microrganismos , Camundongos , Peptídeos/metabolismo , Policetídeos/metabolismo , Gravidez , Organismos Livres de Patógenos Específicos , Simbiose
15.
mSphere ; 5(4)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669458

RESUMO

Colibactin is a nonribosomal peptide/polyketide hybrid natural product expressed by different members of the Enterobacteriaceae which can be correlated with induction of DNA double-strand breaks and interference with cell cycle progression in eukaryotes. Regulatory features of colibactin expression are only incompletely understood. We used Escherichia coli strain M1/5 as a model to investigate regulation of expression of the colibactin determinant at the transcriptional level and to characterize regulatory elements located within the colibactin pathogenicity island itself. We measured clbR transcription in vitro and observed that cultivation in defined minimal media led to increased colibactin expression relative to rich media. Transcription of clbR directly responds to iron availability. We also characterized structural DNA elements inside the colibactin determinant involved in ClbR-dependent regulation, i.e., ClbR binding sites and a variable number of tandem repeats located upstream of clbR We investigated the impact of clbR overexpression or deletion at the transcriptome and proteome levels. Moreover, we compared global gene regulation under these conditions with that occurring upon overexpression or deletion of clbQ, which affects the flux of colibactin production. Combining the results of the transcriptome and proteome analyses with indirect measurements of colibactin levels by cell culture assays and an approximate quantification of colibactin via the second product of colibactin cleavage from precolibactin, N-myristoyl-d-asparagine, we demonstrate that the variable number of tandem repeats plays a significant regulatory role in colibactin expression. We identify ClbR as the only transcriptional activator known so far that is specific and essential for efficient regulation of colibactin production.IMPORTANCE The nonribosomal peptide/polyketide hybrid colibactin can be considered a bacterial virulence factor involved in extraintestinal infection and also a procarcinogen. Nevertheless, and despite its genotoxic effect, colibactin expression can also inhibit bacterial or tumor growth and correlates with probiotic anti-inflammatory and analgesic properties. Although the biological function of this natural compound has been studied extensively, our understanding of the regulation of colibactin expression is still far from complete. We investigated in detail the role of regulatory elements involved in colibactin expression and in the growth conditions that promote colibactin expression. In this way, our data shed light on the regulatory mechanisms involved in colibactin expression and may support the expression and purification of this interesting nonribosomal peptide/polyketide hybrid for further molecular characterization.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Peptídeos/genética , Ativação Transcricional , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo
16.
Microbes Infect ; 22(3): 144-147, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31954842

RESUMO

A functional synergy was previously demonstrated between microcin, salmochelin and colibactin islands in Escherichia coli strains from B2 phylogroup. We aimed to determine this association prevalence in uropathogenic E. coli, and whether it was predictive of the infection severity in a collection of 225 E. coli strains from urinary samples. The high prevalence of this triad, even if it wasn't correlated with infection severity, suggested that it might not be a virulence factor per se within the urinary tract, but would promote its colonization. This triad would enable the strain to dominate the rectal reservoir with a minimal genetic cost.


Assuntos
Bacteriocinas/genética , Enterobactina/análogos & derivados , Família Multigênica , Peptídeos/genética , Escherichia coli Uropatogênica/genética , Enterobactina/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/urina , Humanos , Policetídeos , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Virulência/genética
17.
mSphere ; 4(5)2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578245

RESUMO

Colibactin is a polyketide/nonribosomal peptide produced by Escherichia coli strains that harbor the pks island. This toxin induces DNA double-strand breaks and DNA interstrand cross-links in infected eukaryotic cells. Colibactin-producing strains are found associated with colorectal cancer biopsy specimens and promote intestinal tumor progression in various murine models. Polyamines are small polycationic molecules produced by both microorganisms and eukaryotic cells. Their levels are increased in malignancies, where they contribute to disease progression and metastasis. In this study, we demonstrated that the endogenous spermidine synthase SpeE is required for full genotoxic activity of colibactin-producing E. coli Supplying spermidine in a ΔspeE pks+E. coli strain restored genotoxic activity. Spermidine is involved in the autotoxicity linked to colibactin and is required for direct damaging activity on DNA. The production of the colibactin prodrug motif is impaired in ΔspeE mutants. Therefore, we demonstrated that spermidine has a direct impact on colibactin synthesis.IMPORTANCE Colibactin-producing Escherichia coli strains are associated with cancerous and precancerous colorectal tissues and are suspected of promoting colorectal carcinogenesis. In this study, we describe a new interplay between the synthesis of the genotoxin colibactin and the polyamine spermidine. Polyamines are highly abundant in cancer tissue and are associated with cell proliferation. The need for spermidine in genotoxic activity provides a new perspective on the role of these metabolites in the pathogenicity of colibactin-producing E. coli strains in colorectal cancer.


Assuntos
Escherichia coli/patogenicidade , Mutagênicos/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Espermidina Sintase/metabolismo , Espermidina/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Mutação , Poliaminas/metabolismo , Espermidina Sintase/genética
18.
PLoS Pathog ; 15(9): e1008029, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545853

RESUMO

Although Escherichia coli Nissle 1917 (EcN) has been used therapeutically for over a century, the determinants of its probiotic properties remain elusive. EcN produces two siderophore-microcins (Mcc) responsible for an antagonistic activity against other Enterobacteriaceae. EcN also synthesizes the genotoxin colibactin encoded by the pks island. Colibactin is a virulence factor and a putative pro-carcinogenic compound. Therefore, we aimed to decouple the antagonistic activity of EcN from its genotoxic activity. We demonstrated that the pks-encoded ClbP, the peptidase that activates colibactin, is required for the antagonistic activity of EcN. The analysis of a series of ClbP mutants revealed that this activity is linked to the transmembrane helices of ClbP and not the periplasmic peptidase domain, indicating the transmembrane domain is involved in some aspect of Mcc biosynthesis or secretion. A single amino acid substitution in ClbP inactivates the genotoxic activity but maintains the antagonistic activity. In an in vivo salmonellosis model, this point mutant reduced the clinical signs and the fecal shedding of Salmonella similarly to the wild type strain, whereas the clbP deletion mutant could neither protect nor outcompete the pathogen. The ClbP-dependent antibacterial effect was also observed in vitro with other E. coli strains that carry both a truncated form of the Mcc gene cluster and the pks island. In such strains, siderophore-Mcc synthesis also required the glucosyltransferase IroB involved in salmochelin production. This interplay between colibactin, salmochelin, and siderophore-Mcc biosynthetic pathways suggests that these genomic islands were co-selected and played a role in the evolution of E. coli from phylogroup B2. This co-evolution observed in EcN illustrates the fine margin between pathogenicity and probiotic activity, and the need to address both the effectiveness and safety of probiotics. Decoupling the antagonistic from the genotoxic activity by specifically inactivating ClbP peptidase domain opens the way to the safe use of EcN.


Assuntos
Escherichia coli/fisiologia , Mutagênicos/toxicidade , Probióticos/uso terapêutico , Animais , Antibiose/genética , Antibiose/fisiologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/toxicidade , Vias Biossintéticas/genética , Enterobactina/análogos & derivados , Enterobactina/genética , Enterobactina/fisiologia , Enterobactina/toxicidade , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Feminino , Genes Bacterianos , Ilhas Genômicas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Família Multigênica , Mutação , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/fisiologia , Peptídeos/genética , Peptídeos/fisiologia , Peptídeos/toxicidade , Policetídeos/toxicidade , Probióticos/toxicidade , Domínios Proteicos , Salmonelose Animal/microbiologia , Salmonelose Animal/terapia , Salmonella typhimurium , Sideróforos/genética , Sideróforos/fisiologia , Sideróforos/toxicidade , Fatores de Virulência/genética , Fatores de Virulência/fisiologia , Fatores de Virulência/toxicidade
19.
Nat Commun ; 10(1): 3224, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324782

RESUMO

Proteolytic homeostasis is important at mucosal surfaces, but its actors and their precise role in physiology are poorly understood. Here we report that healthy human and mouse colon epithelia are a major source of active thrombin. We show that mucosal thrombin is directly regulated by the presence of commensal microbiota. Specific inhibition of luminal thrombin activity causes macroscopic and microscopic damage as well as transcriptomic alterations of genes involved in host-microbiota interactions. Further, luminal thrombin inhibition impairs the spatial segregation of microbiota biofilms, allowing bacteria to invade the mucus layer and to translocate across the epithelium. Thrombin cleaves the biofilm matrix of reconstituted mucosa-associated human microbiota. Our results indicate that thrombin constrains biofilms at the intestinal mucosa. Further work is needed to test whether thrombin plays similar roles in other mucosal surfaces, given that lung, bladder and skin epithelia also express thrombin.


Assuntos
Bactérias/metabolismo , Biofilmes , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/microbiologia , Trombina/metabolismo , Animais , Linhagem Celular , Colo/microbiologia , Neoplasias do Colo/microbiologia , Epitélio/microbiologia , Homeostase , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Pele , Trombina/genética , Bexiga Urinária
20.
DNA Repair (Amst) ; 79: 50-54, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31129429

RESUMO

Cells employ specific and nonspecific mechanisms to protect their genome integrity against exogenous and endogenous factors. The clbS gene is part of the polyketide synthase machinery (pks genomic island) encoding colibactin, a genotoxin implicated in promoting colorectal cancer. The pks is found among the Enterobacteriaceae, in particular Escherichia coli strains of the B2 phylogenetic group. Several resistance mechanisms protect toxin producers against toxicity of their products. ClbS, a cyclopropane hydrolase, was shown to confer colibactin resistance by opening its electrophilic cyclopropane ring. Here we report that ClbS sustained viability and enabled growth also of E. coli expressing another genotoxin, the Usp nuclease. The recA::gfp reporter system showed that ClbS protects against Usp induced DNA damage. To elucidate the mechanism of ClbS mediated protection, we studied the DNA binding ability of the ClbS protein. We show that ClbS directly interacts with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), whereas ssDNA seems to be the preferred substrate. Thus, the ClbS DNA-binding characteristics may serve bacteria to protect their genomes against DNA degradation.


Assuntos
Dano ao DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , DNA Bacteriano/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA